THE ADRENAL GLANDS

The adrenal glands, each of which weight about 4 grams, lie at the superior poles of the two kidneys.

THE ADRENOCORTICAL HORMONES

Each gland is composed of two distinct parts:

- 1. The inner adrenal medulla (20% of the gland) is functionally related to the sympathetic nervous system; it secretes catecholamines (adrenaline, nor adrenaline, and dopamine) in response to sympathetic stimulation.
- 2. The outer adrenal cortex (80% of the gland) secretes steroid hormones (corticosteroid) which are essential for the life and includes:

- 1. Mineralocorticoids (aldosterone): affect the electrolytes of ECF, Na⁺ and K⁺
- 2. Glucocorticoids (cortisol): It is affect by increasing blood glucose concentration, an additional affect on both protein and fat metabolism.
- 3. Androgenic hormones: (small amounts): It is effects in the body as the male sex hormone testosterone.

Glucocorticoids:

- **1. Cortisol** (very potent, account for 95% of all glucocorticoid activity).
- **2. Corticosterone** (4% of total glucocorticoid activity, less potent than cortisol).
- 3. Cortisone (synthetic, almost as potent as cortisol).
- **4. Prednisolone** (synthetic, 4 times as potent as cortisol).
- 5. Dexamethasone (synthetic, 30 times as potent as cortisol).

Effect of glucocorticoids (cortisol):

- 1. Effects on CHO metabolism: Stimulation of gluconeogenesis and ↓Glucose utilization by the cells will lead to elevated blood glucose concentration
- 2. *Effect on protein metabolism*: cause increase protein catabolism (muscle weakness) AA concentration in the blood will increase.

3. Effect on fat metabolism:

- a. Cortisol causes mobilization of FA from the adipose tissue→ ↑ FFA in plasma→↑ utilization of FA for energy.
- b. Ketogenic effect

Obesity caused by cortisol: Excess cortisol secretion lead to excess deposition of fat in the chest and head regions of the body, giving to a *buffalo like torso* and a rounded face called *moon face*.

- 4. Effects on blood cells and lymphatic organs.
- 5. Resistance to stress.
- 6. Anti-allergic effect.
- 7. Anti-inflammatory effect.
- **8. Other effects:** glucocorticoids in high doses lead to: \JGH secretion, \JTSH secretion and accelerate the maturation of surfactant in the lungs of fetus

THE MINERALOCORTICOIDS

- 1. Aldosterone (very potent, account for 95% of mineralocorticoid activity).
- **2. Deoxycorticosterone** (one fifteenth as potent as aldosterone, very small quantities secreted).
- **3. Corticosterone** (slight activity).
- **4. Cortisol** (very slight activity).
- **5. Cortisone** (synthetic, slight activity).

Physiological effects

- 1. \uparrow Reabsorption of Na⁺ in exchange for (K⁺) and (H⁺) ions in the renal. Thus causing water retention, urine acidity, and \downarrow H⁺ ion concentration in ECF.
- 1. ↑ Reabsorption of Na⁺ ions from the sweat, saliva, gastric juice, and intestinal secretion.

Regulation of aldosterone secretion:

- *K*⁺ *ion concentration in the ECF*: increase 1meq/L in K⁺ concentration in ECF can directly stimulate the zona glomerulosa cells to secrete aldosterone.
- *Renin-angiotensin system:* elevated values of renin and angiotensin lead to † aldosterone secretion.
- Quantity of body sodium: decreased Na⁺ lead to → ↓ECF volume → ↑renin secretion → formation of angiotensin → stimulate aldosterone secretion.
- ACTH: ACTH. It also has effect on aldosterone secretion

Abnormalities of adrenocortical secretion

Hypoadrenalism (Addison's disease): failure of adrenal cortices to produces adrenocortical hormones

<u>Causes</u>: (TB, autoimmune diseases, and invasion by cancer)

Features:

1. Mineralocorticoid deficiency

- ↓Na⁺ reabsorption(Na⁺, Cl⁺, and water lost in urine)→(↓ECF volume)
 → shock → death
- Hyperkalemia (↑ K⁺)
- Acidosis

2. Glucocorticoid deficiency

- Impossible to maintain normal glucose concentration between meals (impaired gluconeogenesis)
- \downarrow of fat and protein \rightarrow (\downarrow metabolic function of the body)
- Melanin pigmentation in the skin and mucous membrane → (↓
 cortisol secretion) → (↑ACTH and MSH secretion) → melanin
 pigmentation.

Hyperadrenalism (Cushing's syndrome): († increase cortisol secretion)

- 1. Tumor in the adrenal cortex $\rightarrow \uparrow$ secrete cortisol
- 2. Hyperplasia of both adrenal cortices (\(\frac{ACTH}{ACTH} \) secretion)
 - a. ↑ACTH secretion from anterior pituitary (microadenoma)
 - b. Ectopic secretion of ACTH by tumor e.g. abdominal carcinoma
- 3. Iatrogenic (drug up use)

Features:

- Buffalo torso.
- Moon face.
- Acne and hirsutism.
- Hypertension (80%).
- Adrenal diabetes.
- Sever muscle weakness.
- Suppressed immunity→ infection (death)
- Purplish striae (abdomen).
- *Osteoporosis* (bone weakness)→ fracture.

Diagnosis:

- Clinical features.
- ↑ plasma cortisol level.
- \(\gamma\) secretion of 17 hydroxysteroid in urine.

Treatment: \rightarrow according to the cause

- Hypertension (80% of the patients)→ slight mineralocorticoid effect of cortisol
- ↑in blood glucose concentration (↑gluconeogenesis) →diabetes mellitus.
- Severe muscle weakness (protein catabolism).
- Suppressed immunity→ death(infection)
- Diminished collagen fibers in subcutaneous tissues (SC),
 SC tissues tears easily→ purplish striae (abdomen).
- Lack of protein deposition in the bones osteoporosis (bone weakness) fracture.

Primary aldosteronism:

- 1. Tumor of the adrenal cortex \rightarrow secrete aldosterone.
- 2. Hyperplasia of adrenal cortices secrete aldosterone rather than cortisol

Features:

- ↑Na+ reabsorption → ↑ Na+ concentration in ECF (slight) →
 ↑ECF volume → almost always hypertension
- $\downarrow K^+$ in ECF (hypokalemia) \rightarrow periods of muscle weakness

THE THYROID GLAND

- The thyroid gland is consists of 2 lobes (R and L lobes) connected by a bridge of tissue called *the thyroid isthmus*.
- Follicular cells \rightarrow thyroxine (90%) and triiodothyronine (10%) Parafollicular cells \rightarrow calcitonin
- T3 is 4 times as potent as T4 but its present in lower concentration and its duration of action is shorter \rightarrow (effect of T3 = effect of T4).
- Considerable portion of T4 is converted to T3 in blood & tissues

Thyroglobulin: is a large glycoprotein synthesized in the thyroid cells.

Transport of thyroid hormones:

More than 99% of T4 and T3 are bound to plasma proteins.

Functions of thyroid hormones in tissues:

- 1. An\(\gamma\) in the overall metabolic rate: thyroid hormones \(\gamma\) metabolic rate of almost all tissues of the body (except brain, retina, testes, spleen, and lungs).
- 2. In children, stimulation of growth.
 - Hypothyroidism → growth retardation
 - Promote growth and *development of brain* during fetal life and 1st few years of postnatal life (lack of thyroid hormones during this period → mental retardation)

Effects of thyroid hormones on specific body mechanisms:

- **1.** Effect on CHO metabolism:
- \uparrow Thyroid hormones \rightarrow decrease cholesterol, TG and \uparrow FFA.
- Thyroid hormones → increase in basal metabolic rate (60-100%).
 decrease body weight and increases the appetite.
- 2. Effect on the CVS:
 - a. Blood flow and cardiac output:(\(\extrm{ in COP}\)
 - b. Heart rate: increase in heart rate and strength of heart rate
 - c. Blood volume: increased (vasodilatation).
 - d. Arterial pressure: Diastolic blood pressure (↓), Systolic blood pressure (↑)

- 1. Effect on respiration: \uparrow metabolism \rightarrow (\uparrow in 0_2 utilization and CO_2 production)
 - → increase rate and depth of respiration.
- 2. Effect on Gastrointestinal system:
 - a. ↑ in appetite and food intake
 - b. †secretion
 - c. \uparrow motility \rightarrow diarrhea
- 3. Effect on CNS:
 - ↑Thyroid hormone → extreme nervousness
- 11. Effect on the function of the muscle:
- ↑ in the hormone → muscle reacts with vigor
- Excessive ↑ in the hormones → muscle weakness (protein catabolism)
- Lack of hormone → muscle become sluggish and relaxes slowly after contraction
- Muscle tremor: fine muscle tremor is characteristic sign of hyperthyroidism.
- 12. Effect on sleep:
- Hyperthyroid→ difficult to sleep
- Hypothyroid → extreme somnolence.

Causes: <u>Hyperthyroidism</u>:

- •(Toxic goiter, thyrotoxicosis, Graves, disease)
- Toxic adenoma

Graves, disease:

- Gland hyperplastic, 2-3 times of normal size (goiter).
- Rate of thyroid hormone secretion increased 5-15 times of the normal (changes similar to that produced by TSH stimulation of the gland).
- TSH level low

Symptoms of hyperthyroidism:

- intolerance to heat, ↑ sweating, weight loss, diarrhea, muscular weakness, nervousness, inability to sleep, ↑pulse pressure, and tremor of the hands.
- Exophthalmos: protrusion of the eyeball (occur in most hyperthyroid), usually disappear or \downarrow by treatment of hyperthyroidism

Hypothyroidism

- **1.** Autoimmunity → destruction of the gland (inflammation → fibrosis) → hypothyroidism.
- 2. Endemic colloid goiter: Iodine deficiency → decrease thyroid hormone synthesis and secretion → increase TSH → stimulation of secretion of thyroglobulin (colloid) → goiter
- **3. Food** which has propylthyiouracil type of antithyroid activity e.g. of these goitrogenic substances are turnips and cabbage.

Characteristic of hypothyroidism:

• Fatigue and extreme somnolence (sleeping 14-16 hours a day), extreme muscular sluggishness, bradycardia, †body weight, constipation, mental sluggishness, edematous swelling of the body (myxedema) and atherosclerosis († plasma cholesterol).

